Artificial Insanity

Recent Trends in Artificial Intelligence and Machine Learning

Eddy Touma, Co-founder & CEO KLANGOO

Machine Learning vs. (Router-obd-serrog warder-Unglerstanding

NOMINAL COMPOUNDS

John works in a car factory ⇒ John works in a factory [that produces] cars John works in a car dealership ⇒ John works in a dealership [that sells] cars

HIDDEN EVENTS IN RELATIONAL NOMINALS

John enjoyed the book ⇒ John enjoyed [reading] the book John enjoyed the movie ⇒ John enjoyed [watching] the movie John enjoyed the cigarette ⇒ John enjoyed [smoking] the cigarette

QUANTIFIER SCOPE AMBIGUITIES

John visited a house on every street in his neighborhood

⇒ John visited a [different] house on every street in his neighborhood

PREPOSITIONAL PHRASE ATTACHMENTS

I read a story about evolution in the last ten minutes

- ⇒ I read a story about evolution [and finished reading it] in the last ten minutes I read a story about evolution in the last ten million years
- ⇒ I read a story about evolution [that happened] in the last ten million years

4 Technical Reasons why Data-Driven and Machine Learning NLU is a Myth, Walid S. Saba, April 1, 2019

Machine Learning vs. (Rule-based + ML + ...)

LEXICAL SEMANTICS

John likes to play bridge ⇒ John likes to play [the game] bridge

METONYMY

The corner table wants another beer

⇒ The [person sitting at the] corner table wants another beer

The car in front of us is annoying me. Can you pass it, please?

⇒ The [person driving the] car in front of us is annoying me. Can you pass it, please?

METAPHOR

I wouldn't worry about him, John is a rock

⇒ I wouldn't worry about him, John is [as solid as] a rock

CO-PREDICATION AND METONYMY

Barcelona was calm after it voted for independence

⇒ [The city of] Barcelona was calm after it ['s citizens] voted for independence

REFERENCE RESOLUTION

The trophy did not fit in the brown suitcase because it was too small

⇒ The trophy did not fit in the brown suitcase because [the suitcase] was too small [to hold it]

4 Technical Reasons why Data-Driven and Machine Learning NLU is a Myth, Walid S. Saba, April 1, 2019

Machine Learning vs. (Rule-based + ML + ...)

FUNCTION WORDS

- a. I know someone who writes for the White House
- b. I know someone who writes about the White House
- a. John visited a house on every street in his neighborhood
- b. On every street in his neighborhood, John visited a house

STATISTICAL INSIGNIFICANCE

The ball did not fit in the suitcase because it is too

- a. small
- b. big

Professor McDonalds told John that he should soon be done with

- a. reading his thesis
- b. writing his thesis

INTENSION

The president of the United States is elected every 4 years

X Donald Trump is elected every 4 years

Maybe in the 1600's Paris was not the capital of France

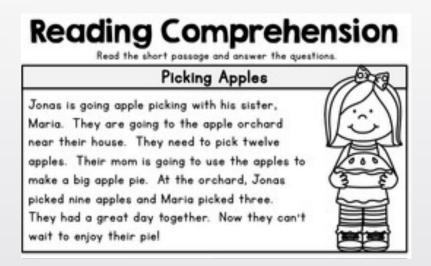
X Maybe in the 1600's Paris was not Paris

4 Technical Reasons why Data-Driven and Machine Learning NLU is a Myth, Walid S. Saba, April 1, 2019

Bottom line

Machine Learning & Statistical Models should **ONLY** be used where it **MAKES SENSE**

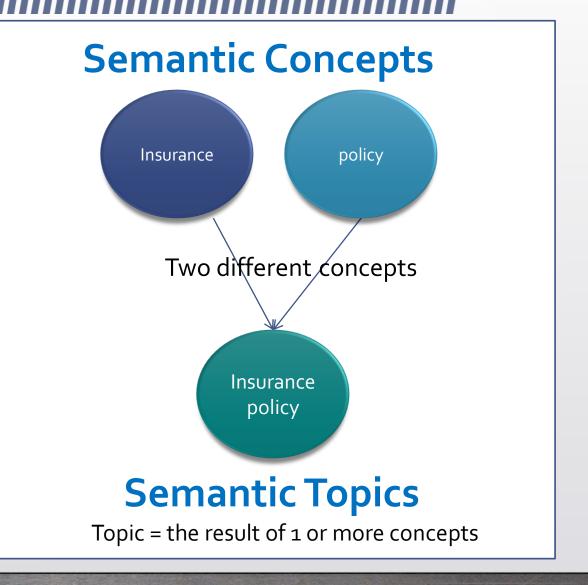
Sample Correct Application

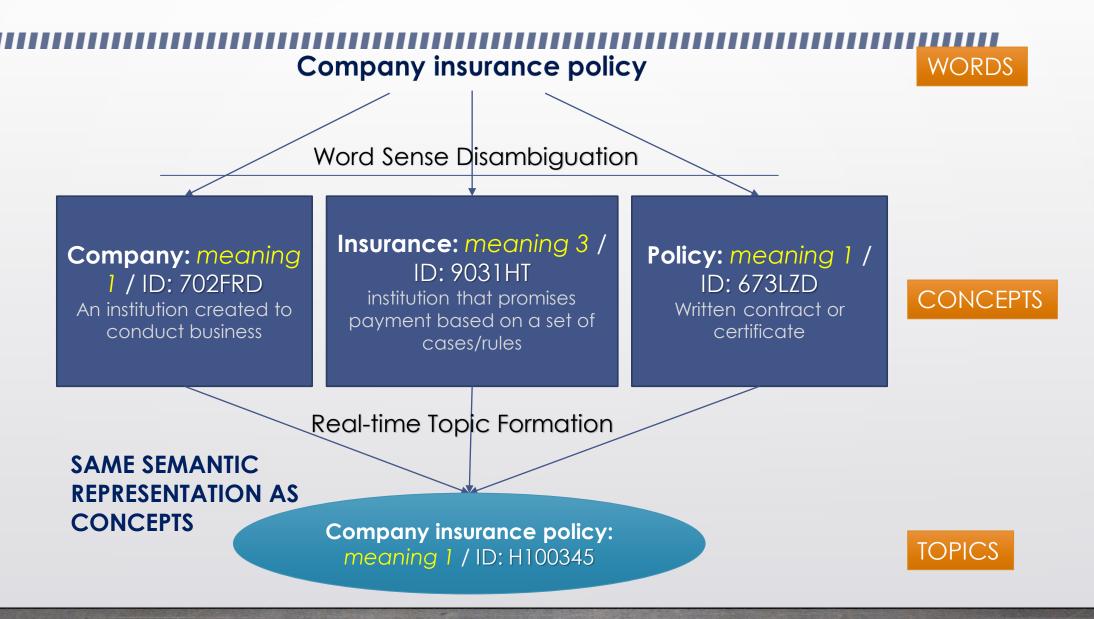


Finding the "aboutness" of a piece of text

I enjoy Jane's **company**. Eddy's **company** is growing.

Word Sense Disambiguation (Semantic Concepts)





Semantic Relations:

- Parallel universe
- Parallel algorithms
- Multi-threaded computing

Topics Analysis

Semantic Fingerprint

Climate change Barack Obama Donald Trump administration Washington Paris agreement Failed negotiations Overturn Pollution Crisis management Security clearance

ID 400389 / score 0.72

ID 29366 / score: 0.67

ID HGJ652 / score: 0.53

ID FM3LK9 / score: 0.32

ID HG8UJ0 / score: 0.31

ID JHL982 / score: 0.23

ID AYT372 / score: 0.21

ID 8800TW / score: 0.19

ID IN73YES / score: 0.16

ID 23PO2WI / score: 0.12

Semantic Matching

Document A

Document B

ID 400389 / score 0.72

ID 29366 / score: 0.67

ID HGJ652 / score: 0.53

ID FM3LK9 / score: 0.32

ID HG8UJ0 / score: 0.31

ID JHL982 / score: 0.23

ID AYT372 / score: 0.21

ID 8800TW / score: 0.19

ID IN73YES / score: 0.16

ID 23PO2WI / score: 0.12

ID 0D0878 / score 0.87

ID Y64232 / score: 0.81

ID KLAHYE / score: 0.67

ID 93NLK8 / score: 0.66

ID USH622 / score: 0.59

ID RE293H / score: 0.52

ID BC7229 / score: 0.42

ID HGJ652 / score: 0.38

ID 400389 / score: 0.21

ID JHL982 / score: 0.11

Somewhat Related / 32%

Comparing Texts in different languages

Automated Entity Addition

Kamala Harris

New suggested recognition: **VP-Elect, VP**

Confidence: High [Count: 273, Period: 1 hour]

Exists in KL's USA VIP
Semantic Network

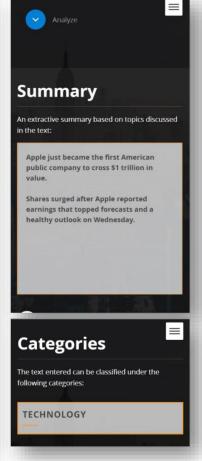
Matches existing type:
POLITICIAN

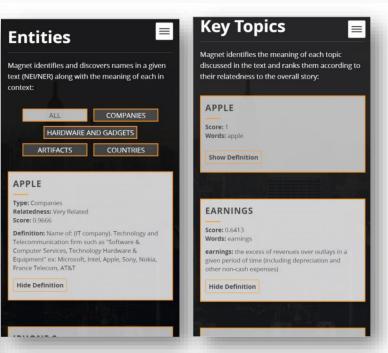
Confidence HIGH

Kamala Harris
ADDITION CONFIRMED
VP-Elect, VP

Comparison with the Leading NLP Engines

	Key Topics		Entity (NER) Extraction from Text				Catogorization	Automated	Semantic Search
	Phrases	WSD*	Types count	WSD*	Languages	Scored	Categorization	Summary of Text	semanlic search
KLANGOO.	Yes	Yes	45+	Yes	<u>100</u> +	Yes	100+ Languages	Yes	Yes
Google	Yes	No	<u>6</u>	No	<u>10</u>	Yes	EN only	No	No
Watson (bluemix)	Yes	No	<u>26</u>	Yes	<u>10</u>	Yes	9 Languages	No	No
Microsoft Azure (LUIS)	Yes	No	NA	No	<u>EN only</u>	No	No	No	No
amazon AWS Comprehence	Yes	No	8	No	EN & ES	Yes	No	No	No





- 1. Extraction of named entities
- 2. Profiling and identifying behavioral patterns
- 3. Semantically/topically related texts and videos
- 4. Semantic alerts ("follow" a story or a topic)
- 5. Semantic automated tagging & categorization
- 6. Semantic Analytics (growing stories & topics)
- 7. Story highlights (automatic summary)

On the same subject (by our very own Dr. Walid Saba):

- Memorizing vs. Understanding (read: Data vs. Knowledge)
- How the Tech Giants are Hampering Progress in Artificial Intelligence and Cognitive Computing
- 4 Technical Reasons why Data-Driven and Machine Learning NLU is a Myth
- Deep Misconceptions and the Myth of Data-Driven Language Understanding
- Why Ambiguity is Necessary, and why Natural Language is not Learnable
- A Knowledge Graph?
- Oh, Doesn't Google Wish!
- The New Al
- Personal Portals: Semantic, Rule-Based Personalization
- Automated, Ontology-Based Semantic Tagging

Thank you

Eddy Touma
CEO & Co-founder
eddy@klangoo.com