

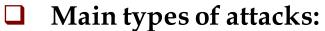
Ashraf A. Zaher

College of Engineering and Applied Sciences American University of Kuwait P. O. Box 3323 – Safat 13034 – Kuwait azaher@auk.edu.kw

MODERN CYBERSECURITY EDUCATIONAL AND TECHNICAL PERSPECTIVES

Chaos for Cybersecurity

25 November 2020



☐ Introduction:

- > Security problem: a general overview
- ► Old era: before and during the 80s (closed/central systems)
- New era: sources of the problem and suggested remedies

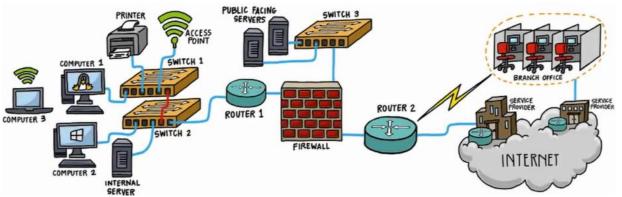
- Malware/Phishing
- Man in the middle
- Password/Ransom
- Corporates related

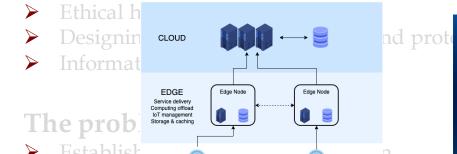
■ Related actions:

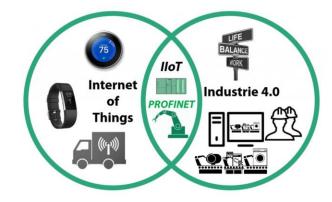
- Ethical hacking
- Designing security architectures and protocols
- Information security

☐ The problem in a nutshell:

- > Establishing secure communication
- Preserve the integrity of stored data


☐ Introduction:

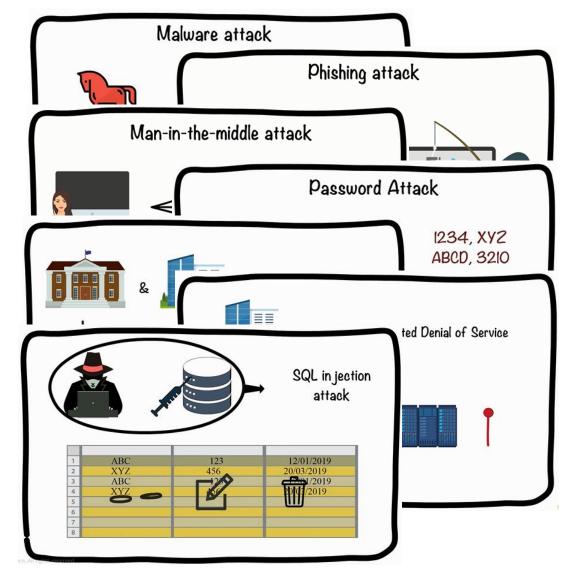

- > Security problem: a general overview
- ➤ Old era: before and during the 80s (closed/central systems)
- New era: sources of the problem and suggested remedies



■ Introduction:

- Security problem: a general overview
- ➤ Old era: before and during the 80s (closed/central systems)
- New era: sources of the problem and suggested remedies

■ Main types of attacks:


- ➤ Malware/Phishing
- Man in the middle
- Password/Ransom
- Corporates related

■ Related actions:

- Ethical hacking
- > Designing security architectures and protocols
- Information security

☐ The problem in a nutshell:

- ➤ Establishing secure communication
- > Preserve the integrity of stored data

LEARN THE 2

COMMAND
LINE

(Configuration and maintenance)

- Building and using VMs: platform agnostic
- Corpora (Host Guest Hypervisor)

Lowest level OS shell to access the OS kernel (e.g. Powershell)

■ Related actions:

- Ethical hacking
- Designing security architectures and protocols
- Information security

- Establishing secure com
- > Preserve the integrity of

Encryption/decryption

(4-layer TCP/IP and the 7-layer OSI)

Introduction:

- Security problem: a general overview
- Old era: before and during the 80s (closed/central systems) λόγος (Logos = Study)
- New era: sources of the problem and suggested remedi

Main types of attacks:

- Malware/Phishing
- Man in the middle
- Corporates related

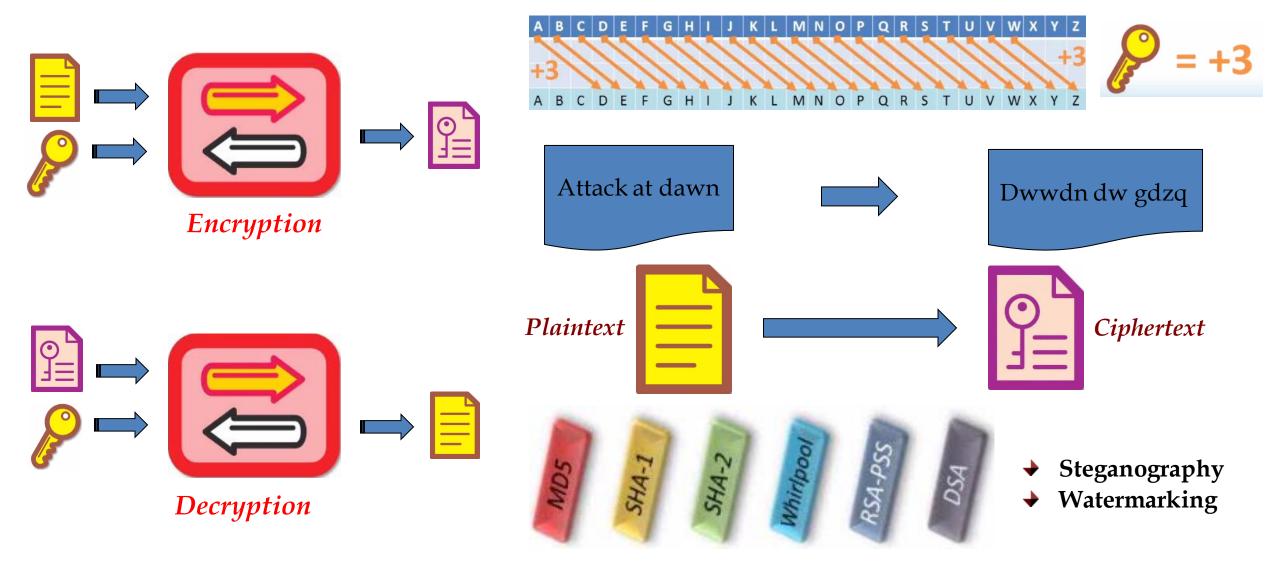
Related actions:

- Designing security architectures and protocols
- Information security

The problem in a nutshell:

- Establishing secure communication
- Preserve the integrity of stored data

→ Cryptology combines the two Greek terms:


- κρυπτός (Kryptos = Secret)
- Describes the science or study of hiding, securely transmitting, and recovering information.
- **→** It is divided into two main categories:
 - Cryptography dealing with securing information.
 - Cryptanalysis trying to break security (legally and illegally).
- **→** Most important applications:
 - Banking,
 - **Electronic Commerce**,
 - Telecommunications,
 - Military, and
 - Protection of intellectual properties.

cryptography

using Chaos

What is Chaos

0.8

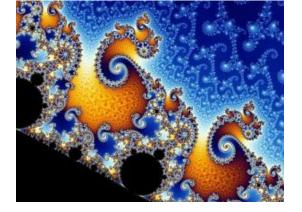
0.4

0.2

Definitions:

- Traditional: Merriam-Webster dictionary
- Scientific: Physics and Engineering

□ History:


- ➤ Brief chronological order
- ➤ Lorenz story (<u>demo</u>)

■ Examples and most famous contributors:

- Continuous-time (Analog)
 - Lorenz
 - o Others: Rossler, Chua, ...
- Discrete-time (Digital)
 - The logistic map
 - The Henon map

■ Methods of Analysis:

- Analytical (Math-based)
- ➤ Simulation (coding)

Applications of Chaos theory

- meteorology
- sociology
- · physics
- engineering
- aerodynamics
- economics
- · biology
- · philosophy.

■ Most important applications:

- > Secure communication
- > True random numbers generation

Candidates for cryptography in cybersecurity

Definitions of Chaos

□ Definitions:

- > Traditional: Merriam-Webster dictionary
- Scientific: Physics and Engineering

☐ History:

- > Brief chronological order
- ➤ Lorenz story (<u>demo</u>)

Examples and most famous contributors:

- Continuous-time (Analog)
 - Lorenz
 - o Others: Rossler, Chua, ...
- Discrete-time (Digital)
 - o The logistic map
 - o The Henon map

■ Methods of Analysis:

- > Analytical (Math-based)
- > Simulation (coding)

■ Most important applications:

- > Secure communication
- True random numbers generation

Chaos is a state of utter confusion or disorder; a total lack of organization or order.

Chaos is an aperiodic long-time behavior arising in a deterministic dynamical system that exhibits a sensitive dependence on initial conditions.

History of Chaos

☐ Definition:

- > Traditional: Merriam-Webster dictionary
- Scientific: Physics and Engineering

□ History:

- > Brief chronological order
- ➤ Lorenz story (<u>demo</u>)

Lorenz, a meteorologist, was running computerized equations to theoretically model and predict weather conditions. Having run a particular sequence, he decided to replicate it. What he found was, contrary to his expectations, these results were radically different from his first outcomes. **Lorenz** had, in fact, entered not precisely the same number, .506127, but the rounded figure of .506.

Examples and most famous contributors:

- ➤ Continuous-time (Analog)
 - o Lorenz
 - o Others: Rossler, Chua, ...
- ➤ Discrete-time (Digital)
 - o The logistic may
 - The Henon map

■ Methods of Analysis:

- ➤ Analytical (Math-based)
- > Simulation (coding)

■ Most important applications:

- > Secure communication
- > True random numbers generation

Exact model:

$$\frac{\partial}{\partial t} (\nabla^2 \psi) = -\frac{\partial (\psi, \nabla^2 \psi)}{\partial (x, z)} + \nu \nabla^4 \psi + g \alpha \frac{dT}{dx}$$

$$\frac{\partial}{\partial t}T = -\frac{\partial(\psi, T)}{\partial(x, z)} + \frac{\Delta T}{H} \frac{\partial \psi}{\partial x} + \kappa \nabla^2 T$$

☐ Simplified model:

$$\dot{x} = \sigma(y - x)$$

$$\dot{y} = -xz + \rho x - y$$

$$\dot{z} = xy - \beta z$$

Ref.: <u>Atmos. Sci. **20**</u>, 130 (1963)

H: uniform depth

 ΔT : imposed temperature difference

g: gravity

a: buoyancy

 κ : thermal diffusivity

v: kinematic viscosity

 ψ : stream function

T: *departure of temperature*

Ra: Rayleigh number

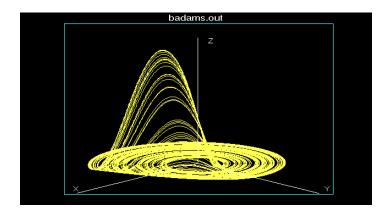
Rac: critical Rayleigh number

x: *convective intensity*

y: temperature difference between descending and ascending currents

z: difference in vertical temperature profile

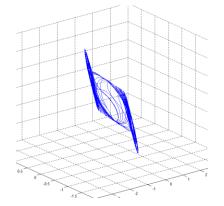
Examples & most famous contributors in Chaos

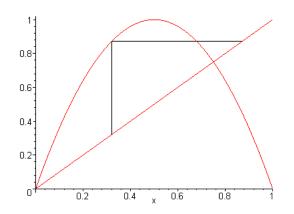

□ Definition:

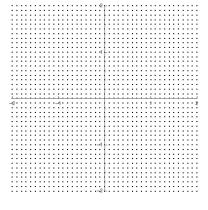
- > Traditional: Merriam-Webster dictionary
- Scientific: Physics and Engineering

☐ History:

- ➤ Brief chronological order
- Lorenz story (<u>demo</u>)




■ Examples and most famous contributors:


- Continuous-time (Analog)
 - Lorenz
 - o Others: Rossler, Chua, ...
- Discrete-time (Digital)
 - The logistic map
 - The Henon map

- > Analytical (Math-based)
- > Simulation (coding)

■ Most important applications:

- > Secure communication
- > True random numbers generation

Current technology removed the clear boundaries between analog and digital chaotic systems; e.g. using FPGAs many analog systems could be almost identical to their digital approximations.

Methods of analyzing Chaos

■ Definition:

- > Traditional: Merriam-Webster dictionary
- Scientific: Physics and Engineering

☐ History:

- ➤ Brief chronological order
- Lorenz story (demo)

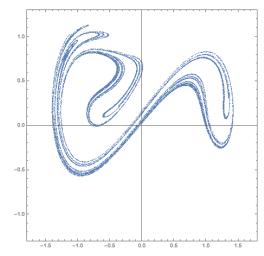
■ Examples and most famous contributors:

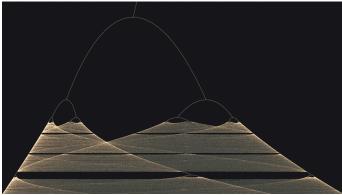
- Continuous-time (Analog)
 - Lorenz
 - o Others: Rossler, Chua, ...
- ➤ Discrete-time (Digital)
 - o The logistic man
 - o The Henon map

■ Methods of Analysis:

- ➤ Analytical (Math-based)
- > Simulation (coding)

■ Most important applications:


- > Secure communication
- > True random numbers generation



Henri Poincaré

Alexander Lyapunov

$$\lambda_i = \lim_{t \to \infty} \frac{1}{t} \log_2 \frac{p_i(t)}{p_i(0)}$$

What is Chaos

■ Definition:

- > Traditional: Merriam-Webster dictionary
- Scientific: Physics and Engineering

☐ History:

- > Brief chronological order
- ➤ Lorenz story (<u>demo</u>)

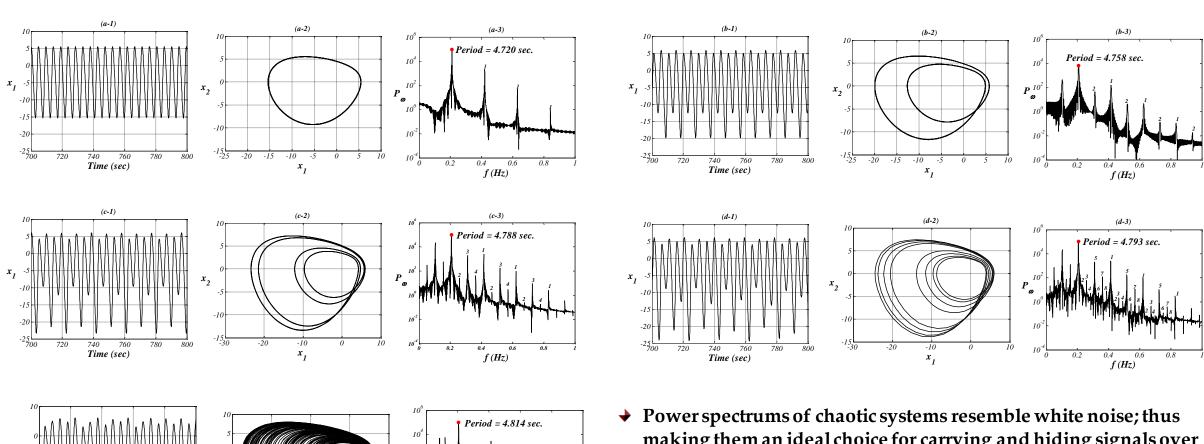
■ Examples and most famous contributors:

- ➤ Continuous-time (Analog)
 - o Lorenz
 - o Others: Rossler, Chua, ...
- Discrete-time (Digital)
 - The logistic map
 - o The Henon map

■ Methods of Analysis:

- > Analytical
- Simulation (coding)

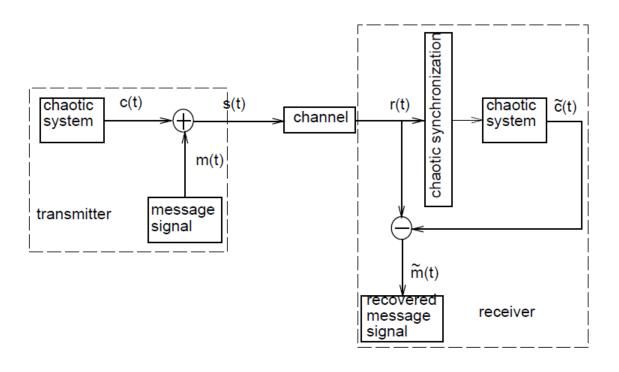
■ Most important applications:

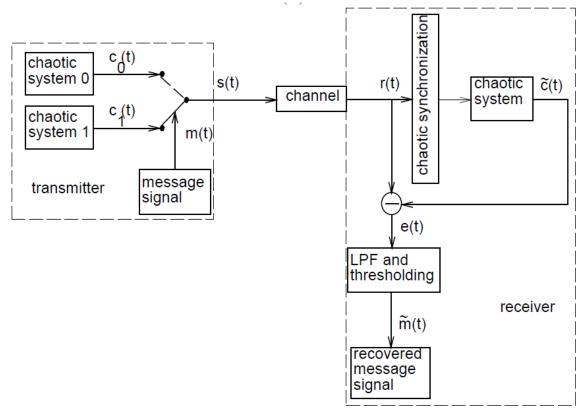

- > Secure communication
- True random numbers generation

Route to Chaos: Period Doubling

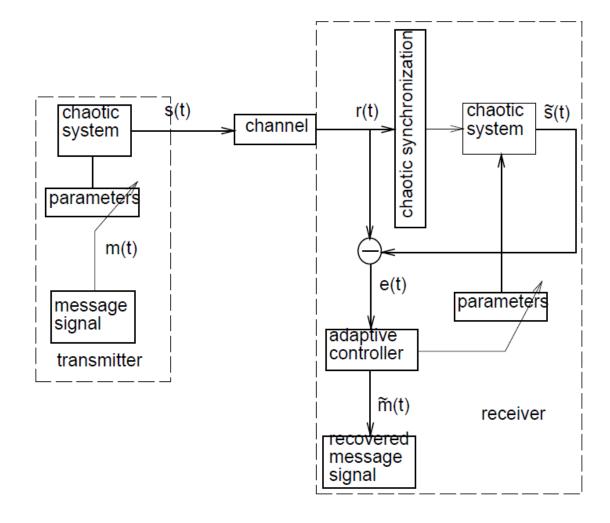
f(Hz)

- making them an ideal choice for carrying and hiding signals over communication channels.
 - They can be easily generated using both analog or digital hardware.
 - Two different and/or equivalent chaotic systems can be easily synchronized using different control methods.


- Generations of Chaos-Based Secure Communication Systems:
 - 1. Additive masking & Shift-keying
 - 2. Parameter modulation & non-autonomous modulation
 - 3. Cryptosystems
 - 4. Impulsive synchronization

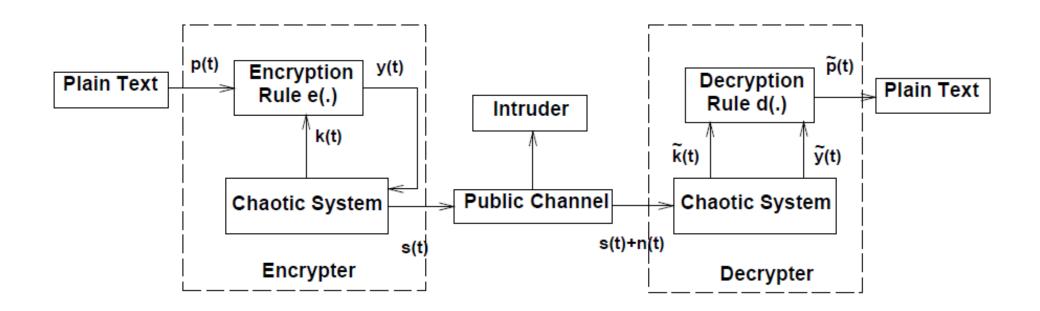


- **→** Generations of Chaos-Based Secure Communication Systems:
 - 1. Additive masking & Shift-keying
 - 2. Parameter modulation
 - 3. Cryptosystems
 - 4. Impulsive synchronization

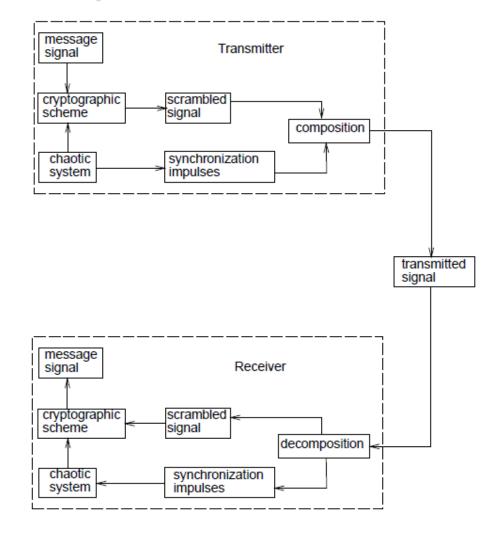


25 November 2020 Ashraf Zaher 16

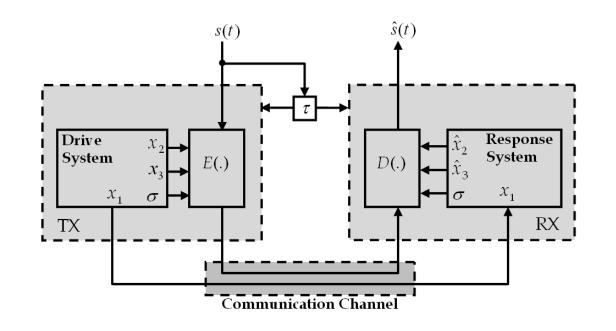
- **→** Generations of Chaos-Based Secure Communication Systems:
 - 1. Additive masking & Shift-keying,
 - 2. Parameter modulation
 - 3. Cryptosystems
 - 4. Impulsive synchronization



- **→** Generations of Chaos-Based Secure Communication Systems:
 - 1. Additive masking & Shift-keying
 - 2. Parameter modulation
 - 3. Cryptosystems
 - 4. Impulsive synchronization



- **→** Generations of Chaos-Based Secure Communication Systems:
 - 1. Additive masking & Shift-keying
 - 2. Parameter modulation
 - 3. Cryptosystems
 - 4. Impulsive synchronization



An example of chaos-based secure communication

- 1. Synchronization
- 2. Parameter update law
- 3. Encryption & Decryption

$$\begin{aligned} \tau \dot{x}_1 &= -\sigma x_1 + \sigma x_2 \\ \tau \dot{x}_2 &= \rho x_1 - x_2 - x_1 x_3 \\ \tau \dot{x}_3 &= -\beta x_3 + x_1 x_2 \end{aligned}$$

$$E(X,\alpha,s,t) = x_1^2 + (\alpha^2 + x_1^2)s(t)$$

$$\hat{s}(t) = D(\hat{X},\hat{\alpha},s,t) = (E(X,\alpha,s,t) - \hat{x}_1^2)/(\hat{\alpha}^2 + \hat{x}_1^2)$$

(1) Achieving Synchronization

$$\dot{\hat{x}}_2 = \rho x_1 - \hat{x}_2 + x_1 \hat{x}_3$$

$$\dot{\hat{x}}_3 = -\beta \hat{x}_3 - x_1 \hat{x}_2$$

$$e_i = \hat{x}_i - x_i$$
, $i = 2,3$

→ Lyapunov Function:
$$L_{23} = 0.5(e_2^2 + e_3^2)$$

• Verifying Stability:
$$\dot{L}_{23} = (e_1 \dot{e}_1 + e_3 \dot{e}_3) = -(e_2^2 + \beta e_3^2) < 0$$

(2) Identifying the secret key

Goals:

- Decoupled from the synchronization process
- ➤ Should have adjustable convergence rate

Error dynamics:

$$\begin{split} \dot{e}_1 &= \dot{\hat{x}}_1 - \dot{x}_1 = (-\hat{\sigma}\hat{x}_1 + \hat{\sigma}\hat{x}_2) + (\sigma x_1 - \sigma x_2) \\ &= (-\hat{\sigma}\hat{x}_1 + \hat{\sigma}\hat{x}_2 + \hat{\sigma}x_1 - \hat{\sigma}x_2) + (\sigma x_1 - \sigma x_2 - \hat{\sigma}x_1 + \hat{\sigma}x_2) \\ &= \hat{\sigma}[(\hat{x}_2 - x_2) - (\hat{x}_1 - x_1)] + (\hat{\sigma} - \sigma)(x_2 - x_1) \\ &= \hat{\sigma}(e_2 - e_1) + e_{\sigma}(x_2 - x_1) \end{split}$$

$$\dot{e}_{2} = \dot{\hat{x}}_{2} - \dot{x}_{2} = (\rho x_{1} - \hat{x}_{2} - x_{1} \hat{x}_{3}) - (\rho x_{1} - x_{2} - x_{1} x_{3}) \quad \dot{e}_{3} = \dot{\hat{x}}_{3} - \dot{x}_{3} = (-\beta \hat{x}_{3} + x_{1} \hat{x}_{2}) - (-\beta x_{3} + x_{1} x_{2}) \\
= -(\hat{x}_{2} - x_{2}) - x_{1}(\hat{x}_{3} - x_{3}) \\
= -e_{2} - x_{1} e_{3}$$

$$= -\beta e_{3} + x_{1} e_{2}$$

(2) Identifying the secret key

→ Changes:

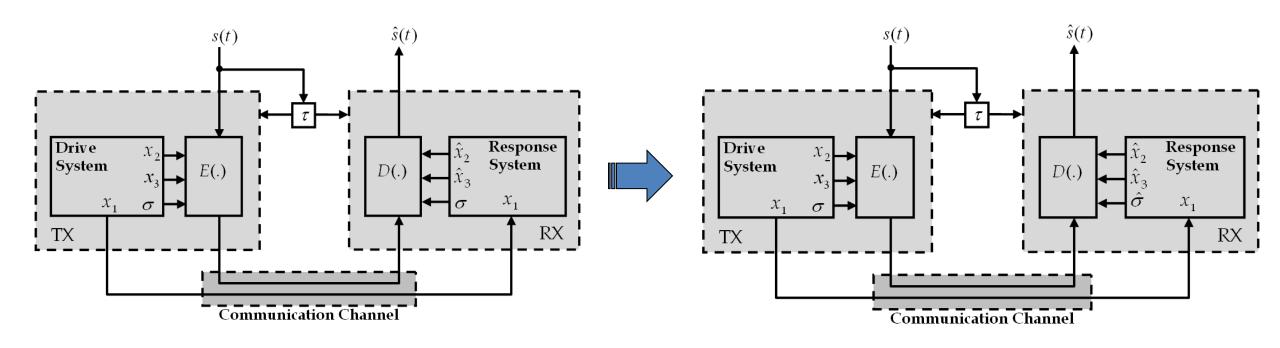
- ➤ Modified Lyapunov function
- > Designing the parameter update law

$$L = 0.5[e_1^2 + \mu_{23}(e_2^2 + e_3^2) + \mu_{\sigma}e_{\sigma}^2]$$

$$\begin{split} \dot{L} &= e_1 \dot{e}_1 + \mu_{23} e_2 \dot{e}_2 + \mu_{23} e_3 \dot{e}_3 + \mu_{\sigma} e_{\sigma} \dot{e}_{\sigma} \\ &= (\hat{\sigma} e_1 e_2 - \hat{\sigma} e_1^2 + x_2 e_1 e_{\sigma} - x_1 e_1 e_{\sigma}) - (\mu_{23} e_2^2 + \mu_{23} x_1 e_2 e_3) + (\mu_{23} x_1 e_2 e_3 - \mu_{23} \beta e_3^2) + \mu_{\sigma} e_{\sigma} \dot{\hat{\sigma}} \\ &= -(\hat{\sigma} e_1^2 - \hat{\sigma} e_1 e_2 + \mu_{23} e_2^2) - \mu_{23} \beta e_3^2 + e_{\sigma} [e_1 (x_2 - x_1) + \mu_{\sigma} \dot{\hat{\sigma}}] \end{split}$$

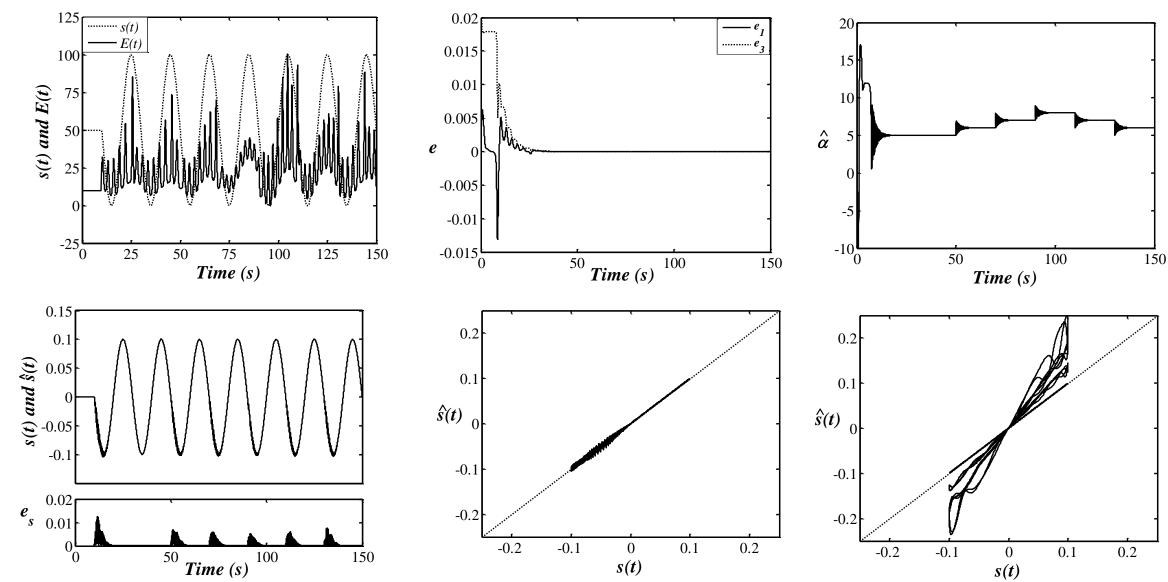
$$\mu_{23} = \frac{\hat{\sigma}}{4}, 0 \le \hat{\sigma} \le \sigma_{\max} \qquad \qquad \dot{\hat{\sigma}} = -\frac{1}{\mu_{23}} (x_2 - x_1) e_1 = -\frac{1}{\sigma \mu_{23}} e_1 \dot{x}_1 = k \dot{x}_1 (x_1 - \hat{x}_1)$$

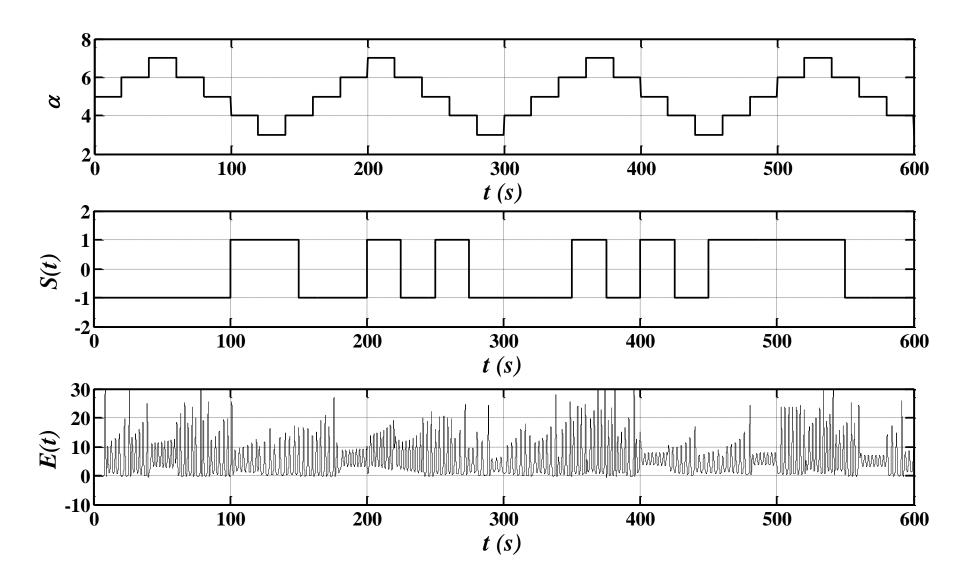
$$\dot{L} = -\left[\left(\sqrt{\hat{\sigma}}e_{1}\right)^{2} - 2\sqrt{\hat{\sigma}}\frac{\sqrt{\hat{\sigma}}}{2}e_{1}e_{2} + \left(\frac{\sqrt{\hat{\sigma}}}{2}e_{2}\right)^{2}\right] - \frac{\hat{\sigma}}{4}\beta e_{3}^{2} = -\left(\sqrt{\hat{\sigma}}e_{1} - \frac{\sqrt{\hat{\sigma}}}{2}e_{2}\right)^{2} - \frac{\hat{\sigma}}{4}\beta e_{3}^{2} \le 0$$

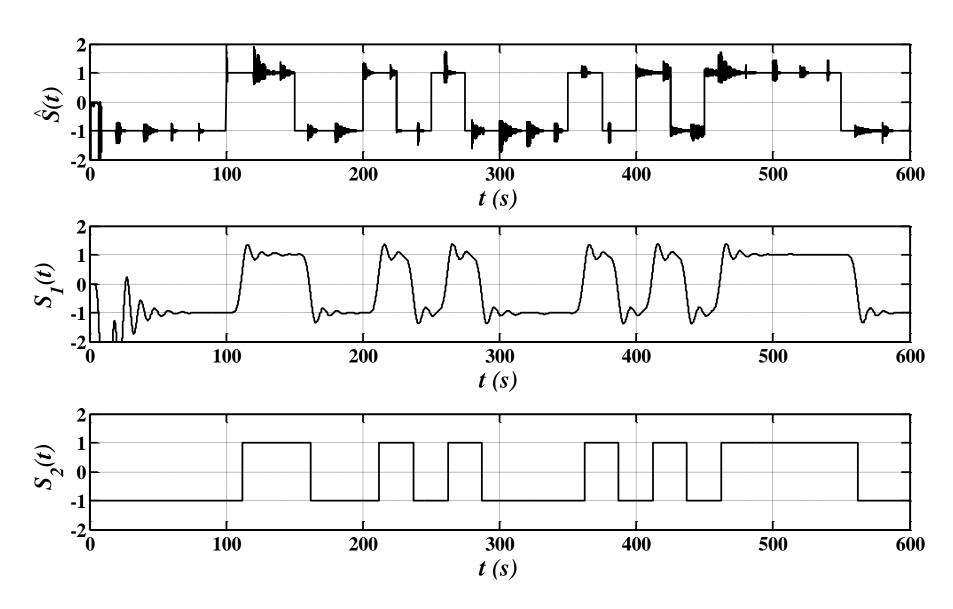


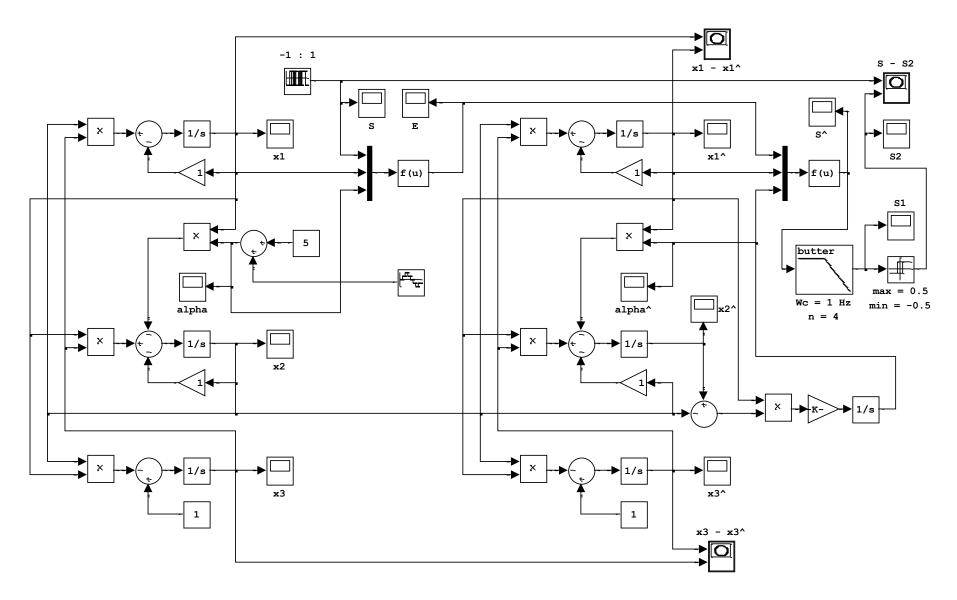
(3) Encryption & Decryption

$$E(X,\alpha,s,t) = x_1^2 + (\alpha^2 + x_1^2)s(t)$$


$$\hat{s}(t) = D(\hat{X},\hat{\alpha},s,t) = (E(X,\alpha,s,t) - \hat{x}_1^2)/(\hat{\alpha}^2 + \hat{x}_1^2)$$







28

Current Practices and Future Trends

☐ Theory and applications:

- > Hyperchaotic systems
- ➤ Nature of the system
- ➤ Different Signals
- ➤ Real-time vs. offline operation
- ➤ Analog vs. digital implementation
- ➤ Adaptive techniques

☐ Impact on research:

- ➤ Multidisciplinary teams
- ➤ Revolutionary implementations
- ➤ Quantum chaos
- ➤ Compatibility with networks protocols
- ➤ Usage of bandwidth

Thank you very much Q/A